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Summary

The paper illustrates a parallel and distributed scheme for computing a planar Delaunay trian-

gulation using a divide-and-conquer strategy in Cloud environment, which combines the incre-

mental insertion algorithm and the divide-and-conquer method. The proposed hybrid algorithm

for Delaunay triangulation construction is easy to be parallelized due to the dynamic pruned

characteristic of the binary tree model used. Moreover, the Cloud platform decreases the commu-

nication overhead and improves data locality by making use of a data partitioning and integrating

scheme offered by the map-reduce architecture. The implementation of the parallel and dis-

tributed version of the algorithm relied on a robust data structure called quad-edge, which implies

the geometric relationship among the edges and vertexes adjacent. More importantly, the data

are serialized easily and transmitted efficiently between different Cloud nodes; the algorithm

is executed conveniently on PC clusters. We tested the parallel version of the algorithm on

GeoKSCloud, a geographical knowledge service Cloud developed by our research team. Exper-

imental results show that the proposed hybrid algorithm is efficient and competitive; it can be

easily migrated and deployed in distributed and parallel computing environment, such as grid

and Cloud. The parallel implementation of the hybrid algorithm has a good speed-up, while data

communication is the crucial factor for the efficiency of the parallel version. Overall, the par-

allel version outperforms both the sequential divide-and-conquer algorithm and the sequential

incremental insertion algorithm.
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1 INTRODUCTION

Delaunay triangulation (D-TIN) and its geometric dual Voronoi dia-

gram are two significant data structures in computational geometry,

which are widely used in many industry applications, such as geo-

graphical information system, digital elevation model, terrain analysis,

computer graphics and computer vision, finite element analysis, and

surface reconstruction.1 With the booming development of data col-

lection technology and computer hardware, parallel and distributed

computation-based Delaunay algorithm2–4 is becoming a hot research

area in recent years. But the shortage of multicore CPU computers

seriously limits the usage of parallel D-TIN. The superiority of Cloud

computing over other parallel and distributed environment makes par-

allel D-TIN construction in Cloud become a promising way to pro-

mote the efficiency of algorithm when processing large-scale data in

compute-intensive applications. In addition, in many real situations,

datasets are tend to distribute in different geographical locations,

so the construction of D-TIN on local and global datasets is usually

required simultaneously by some practical applications.5,6

There are several categories of algorithms to construct D-TIN.

Among which, the incremental insertion algorithm is competitive for

several reasons when compared with the others.7,8 First, it is much

easier to implement the incremental algorithm (IA) because of its sim-

plicity, and it is applicable to various datasets especially when their sizes

increase dynamically. Second, if the site set is sampled with a uniform

probability distribution, the expected time for each insertion is small

and roughly independent of n; the processing time is then dominated

by site location. For the simple walk algorithm,9,10 to locate a site in an

existing triangulation, the expected time is roughly O(n
1
2 ) for each site,

so the total computational time is O(n
3
2 ).11 As a result, the performance

can be quite acceptable in many real-world applications, even when

the sites are all given in advance. Third, in many practical situations,

Concurrency Computat: Pract Exper. 2017;e4157. wileyonlinelibrary.com/journal/cpe Copyright © 2017 John Wiley & Sons, Ltd. 1 of 10
https://doi.org/10.1002/cpe.4157



2 of 10 LIN ET AL.

successive sites tend to be close to each other. Consequently, the edge

returned in the previous call can be used by the location process as its

starting point; each insertion may take roughly a constant time. In such

cases, the incremental insertion method may perform better than the

divide and conquer even for a large number of sites.12,13

However, the incremental insertion algorithm can not be par-

allelized, and the datasets in many practical D-TIN applications

are usually very large and may be stored in different geograph-

ical distributed nodes, and the D-TIN can not be computed in a

single machine, and even in a high-performance computing (HPC)

server, the traditional D-TIN algorithm is incapable of figuring out

the problem, which urges us to combine the incremental insertion

algorithm with another existing algorithm that is capable of parallel

computing. Considering the high-efficiency, autonomy character-

istics of the divide and conquer algorithm for D-TIN, this paper

focuses on a hybrid algorithm (HA) that combines the incremental

insertion algorithm and the divide-and-conquer algorithm, which

has the advantages of both, and is high efficiency and simple to

be migrated and deployed in a distributed and parallel computing

environment.

The rest of this paper is organized as follows: Section 2 briefly

describes some closely related work on D-TIN and the architecture

of a Cloud test-bed, GeoKSCloud, a geographical knowledge service

Cloud developed by our project team. Then, a HA to construct D-TIN

is introduced in Section 3. In section 3.1, the design and implementa-

tion of a distributed and parallel D-TIN service in GeoKSCloud platform

is described in detail. Section 4 presents experimental results with

contrast evaluation of the HA on centralized and Cloud environment.

Finally, we conclude in Section 5.

2 RELATED WORK

For a dataset with n sites, the Voronoi Diagram is a subdivision of the

plane into n regions; each region corresponds to one site. The region

for a given site consists of that portion of the plane closer to it than

to any other sites. Both D-TIN and its dual Voronoi diagram have been

widely used in several domains, such as geography, meteorology, biol-

ogy, anthropology, archeology, astronomy, geology, physics, metallurgy,

and statistics.14–16 As a consequence, they have attracted numerous

researchers from various disciplines, and a large number of algorithms

have been proposed and implemented.

There are several categories of algorithms to construct D-TIN,

including some direct methods and the indirect method. A direct

method computes and obtains D-TIN directly, while the indirect method

construct Voronoi diagram first and then gain the geometric dual

D-TIN subsequently. Typical direct algorithms for D-TIN include the

divide-and-conquer algorithm, the incremental insertion algorithm

(which is also called dynamic algorithm17), the triangle expanding

algorithm, the plane sweep line algorithm, the gift wrapping algorithm,

and the convex hull based algorithm.1 For n sites in the plane, the opti-

mal time complexity for the divide-and-conquer algorithm, the plane

sweep line approach and the convex hull based algorithm can be as pre-

dominance as O(nlogn), while the other ones7 have time complexity of

O(n2). In a word, each of the D-TIN constructing algorithm has some

specific characteristic, which can fulfill the requirements of different

application scenarios.

Lee and Schachter18 first proposed an indirect approach to con-

struct D-TIN, then Guibas and Stolfi19 gave more details and designed a

very robust implementation to demonstrate the efficiency and advan-

tages of their quad-edge data structure for representing subdivisions.

Besides that, typical D-TIN algorithms have been introduced: the incre-

mental insertion algorithm, the divide-and-conquer method, and the

plane sweep-line approach over the past 2 decades.

Unfortunately, most of the existing D-TIN algorithms and their dual

Voronoi diagram often tend to neglect the handling of the numerical

stability of interesting complex bisector manipulation, and some spe-

cial cases such as cocircular sites and sites lying on a line. Moreover,

some distributed and parallel D-TIN mechanisms on Cloud environment

do not scale well and present poor performance for compute-intensive

network-based applications.20,21

There are many strategies to compute D-TIN for a set P of n sites.

These strategies can be grouped into 2 categories: direct and indi-

rect methods. The indirect method is to construct the Voronoi diagram

(Vor(P)) first and then obtains its dual Delaunay TIN T(P); while the

direct methods compute D-TIN directly, typical direct methods include

the randomised IA, the divide-and-conquer method, and the plane

sweep-line approach.22 Time complexity of the incremental insertion

algorithm for inserting n sites is approximately O(n2), and both the

divide-and-conquer method and the plane sweep-line approach have

intrinsic predominance in term of time complexity O(nlogn). However,

as described in Section 1, the incremental insertion method may per-

form better than the divide-and-conquer algorithm in some special

circumstances; that is the reason why we proposed a HA that com-

bines the divide-and-conquer algorithm and the incremental inser-

tion algorithm, while the HA is efficient and has a time complexity of

O(nlogn), and what is more, the HA algorithm can be easily parallelized

in a distributed and parallel computing environments.

The emergence of distributed shared infrastructures and Cloud

technologies provide new paradigms for dealing with spatial data min-

ing applications, and various sources are available for collaborative

computing in Cloud and Cloud environment.5 The problem of poor

efficiency of traditional algorithms can be solved by distributed and

parallel computing mechanisms.23,24 We believe that Cloud technol-

ogy will greatly improve the distributed data-mining techniques in

both the ability to provide on-line and on-demand knowledge cre-

ation/discovery services and collaborative composition of the knowl-

edge service itself.

A geographical knowledge service Cloud test-bed

(GeoKSCloud)25,26 is developed by our research team, which is an

internet-based, intelligent Cloud platform. GeoKSCloud provides

the main functions of distributed spatial data mining and spatial

decision-support based on the SOA architecture and Cloud middleware

Hadoop. The ultimate goal is to provide an intelligent, efficient, and col-

laborative geo-spatial problem-solving environment, which will greatly

promote the deep transformation of web sharing of spatial informa-

tion, from the simplest information exchange and interoperability to

the spatial data mining and decision-support services.

GeoKSCloud currently includes all the features owned by computa-

tional Cloud and Cloud. Once a knowledge service is deployed, it can be
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monitored, discovered, shared, and called by every node of the Cloud.

After introducing large amounts of spatial data-mining services and

spatial decision-support services, GeoKSCloud has different kinds

of knowledge service capabilities, such as spatial clustering, spatial

association rule mining, spatial outlier detection, and urban air

pollutant dispersion simulation that are needed by various applica-

tions. Through years of research on spatial data-mining algorithms and

the mechanisms of Cloud service interoperability, several main function

modules have reached maturity and provide better and reliable

distributed spatial knowledge services with map-reduce architecture.

Typical modules include Cloud resource center, Cloud information

center, execution management center, knowledge service center, and

Cloud platform management center with a uniform Cloud portal

interface. Moreover, GeoKSCloud provides a novel problem-solving

environment that will enable the in-depth study of distributed D-TIN

algorithms in Cloud environment.26

In recent years, Cloud system and platform are widely used in

distributed computing and data-mining practices.5,27,28 This paper

conducts distributed and parallel D-TIN computing research in a

geographical knowledge service Cloud, named GeoKSCloud, which is

developed and tested in our laboratory.

3 HYBRID ALGORITHM FOR PARALLEL D-TIN

In this section, we introduce a hybrid technique for performing D-TIN.

The technique combines the divide-and-conquer and the incremental

insertion algorithms.

Considering a site set P with n points in the plane, 𝜃 is the threshold

that whether the subproblem needs to be further segmented. The ker-

nel idea of the HA is that if the scale of problem P is smaller than 𝜃, then

IA is used to compute the D-TIN. Otherwise, the problem P is segmented

into 2 approximately equal size of subproblems, namely, left subprob-

lem (L) and right subproblem (R), and the corresponding D-TIN T(L) and

T(R)of L and R are computed, respectively. That is, the divide strategy of

GuibasStolfi’s divide-and-conquer algorithm3 is applied to the problem

whose scale is over 𝜃.

During the process of problem segmentation, the subproblems are

divided top-down and recursively until the scale of subproblems (Li)
and (Ri) is less than 𝜃. For the leaf nodes in the segmentation tree, IA

is adopted to construct D-TINs, and the result sub-DTINs are merged

bottom-up on the basis of the binary tree until the global D-TIN is

obtained. Thus, all the sequential steps can be processed in parallel by

using multitasking parallel technology. Hence, the parallel version of the

algorithm is presented in the section subsequent.

The principle of problem decomposition and subtriangulations

merging for the HA is shown in Figure 1.

Main steps of HA algorithm include the divide-and-conquer and the

incremental insertion stages, which are more adequate to run on dis-

tributed platforms and mainly for very large Delaunay decomposition

problems. Through seamless combination of these 2 steps, the new

approach inherits the advantages of high-adaptability, simplicity of the

incremental insertion algorithm and the advantages of high-efficiency,

autonomy of the divide-and-conquer algorithm.29 At the same time, it

overcomes the fatal drawback of a large number of recursions involved

in the divide-and-conquer algorithm without a significant reduction

in the efficiency. In particular, in a distributed environment, it avoids

a large number of network communications and hence improves its

performance.

3.1 Parallel D-TIN computing in Cloud

The parallel D-TIN construction in Cloud consists of 2 atomic services,

namely, the divide-and-conquer and the incremental services. The 2

services are encapsulated and deployed independently as atomic Cloud

services on different Cloud nodes in GeoKSCloud. Jointly, calledD-TIN

service, the 2 services constitute an integrated distributed D-TIN ser-

vices. Once a Cloud service is successfully started in any Cloud node, it

is ready for the client to invoke a Cloud service everywhere. More detail

information about the mechanism of parallel and distributed comput-

ing in GeoKSCloud can be found in several studies.30,31 The key steps of

a distributed version of the HA in a Cloud environment are as follows:

1. Sort the sites in ascending order with planar scanning sequence,

that is, (xi, yi) < (xi+1, yi+1) if and only if xi < xi+1, or xi = xi+1 and yi <

yi+1. After this process, data sites are divided into several nonover-

lapping subsets along the x- and y-axis directions. Each data cell is

allocated roughly equal number of sites.

2. Find an available Cloud computing node to conduct the construc-

tion of D-TIN for siteset P. Note that this initial Cloud computing

node should be able to invoke the hybrid D-TIN service.

3. If the problem size is smaller than a specified threshold, compute

the D-TIN directly and return the result of D-TIN to the user.

4. If the problem size is greater than the threshold, partition the

problem into 2 adjacent subproblems of approximately equal

FIGURE 1 Problem decomposition and sub-Delaunay triangulations (D-TINs) merging in hybrid algorithm
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size, and find 2 available Cloud nodes to deal with them. Go to

step 3.

5. Once the division of the initial problem into small subproblems has

been finished, the subproblems are performed in parallel on their

corresponding Cloud nodes. Each subproblem will generate a sub-

graph. This partitioning forms a binary tree, in which the leaves

represent the subproblems.

6. Merge every 2 adjacent subgraphs starting from the bottom (leaf

nodes) of the tree using the merge algorithm of the divide and con-

quer. This is repeated at every level of the tree until we reach the

root of the tree, which represents the initial Cloud node with the

whole site set P.

3.2 GeoKSCloud processes

The execution and scheduling flowchart of the distributed and parallel

D-TIN in GeoKSCloud is shown in Figure 2. When a D-TIN is submitted

and registered to the Cloud platform, the execution management cen-

ter (refers to GRAM by Globus) will find and invoke an available hybrid

D-TIN service to perform the task.

In practical D-TIN construction applications, after a job has been sub-

mitted to the Cloud platform, a hybrid D-TIN service can be invoked.

If the problem scale is smaller than the threshold, the execution man-

agement center will invoke a Cloud server to deal with the problem. If

the scale of the problem is greater than the threshold, 2 Cloud servers

are invoked, 1 for each subproblem.

As shown in Figure 2, the merge step keeps waiting until all the 2

subproblems have been solved and the subgraphs have been returned

to their parents. To optimize the distributed version of the HA, for

both computation and communication times, the Cloud platform will

allocate only an extra node instead of 2 to complete the 2 subtasks.

Therefore, one needs to find a Cloud server to deal with 1 subprob-

lem while the other subproblem is processed by the local node. In this

way, not only it reduces the response time due to data transmission

between nodes but also it reduces the application requirements for

resources.

3.3 System architecture

The architecture of the system is shown in Figure 3 in more details.

The 2 atomic services of the HA are registered to the information cen-

ter and deployed on the sever gird nodes. The execution management

center will conduct services discovery, auto-matching and execution

optimization for the distributed D-TIN job submitted.

FIGURE 2 Distributed Delaunay triangulation (D-TIN) construction in Cloud environment
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FIGURE 3 Network topology of distributed Delaunay triangulation (D-TIN) service in GeoKSCloud

A detailed process of Cloud service management and scheduling by

the execution management center is shown in Figure 3. In GeoKSCloud,

all services are registered and monitored by the information center

MDS (refers to the Cloud service monitor and discovery service in

Cloud). For instance, for hybrid D-TIN services, the execution manage-

ment center will access the MDS center for the incremental insertion

D-TIN services and their corresponding data services when the task

is performed. Essentially, all Cloud services registered with MDS keep

their stubs in the information center. Once an application requires a

specified Cloud service, it requests its corresponding stub from MDS

and invokes the service in Cloud servers simultaneously. At the same

time, the data set involved in the application, referred to as a data ser-

vice, is sent to the Cloud server. In GeoKSCloud, the data management

is implemented by means of data movement service, such as CloudFTP

(Cloud file transfer protocol) and RTF (reliable file transfer), or data

replica service, such as RLS (replica location service). In a word, all

the cloud services related to data are managed by GRAM (the Global

Resource Allocation Manager of Cloud), and the organization of cloud

data is with DAI infrastructure (the Data Access and Integration model).

So each node will serialize the data locally and then transmit the param-

eters to the Cloud server. At the Cloud server, the data will be deserial-

ized and used by the process of D-TIN construction. Without doubt, all

operations in cloud is under GSI (the Global Security Infrastructure of

Cloud), to ensure the safety of data and service functions of Cloud.

As shown in Figure 4, steps 1 to 12 are the main procedures for

a distributed D-TIN scheduling. The steps A to D are executed by the

information center that referring to an incremental D-TIN service; and

substeps a and b depict the distributed and parallel mechanism for

the HA and their scheduling processes in a Cloud environment. If the

problem size is smaller than the threshold, it will request and invoke an

incremental D-TIN server. Otherwise, it will request and invoke another

hybrid D-TIN server.

3.4 Implementation

The most important task of the proposed distributed and parallel D-TIN

construction service in a Cloud is to implement 2 atomic D-TIN services:

the Hybrid D-TIN service and the incremental insertion D-TIN service.

Guibas and Stolfi32 proposed an robust quad-edge data structure

for representing graph embedding on 2-dimensional manifolds, which

simultaneously represents a structure and its dual. In this paper,

this idea is adopted to represent D-TIN. The implementation of the

divide-and-conquer algorithm, IA, and the HA benefitted hugely from



6 of 10 LIN ET AL.

FIGURE 4 Execution and scheduling of distributed Delaunay triangulation (D-TIN) construction in GeoKSCloud. CloudFTP, Cloud file transfer
protocol; HA, hybrid algorithm; IA, incremental algorithm; MDS, monitor and discovery service; RLS, replica location service; RTF, reliable file
transfer

quad-edge data structure and mainly the integration of the incremental

insertion algorithm into the divide-and-conquer algorithm.

The pseudocode for the implementation of hybrid D-TIN construc-

tion algorithm in Cloud environment is shown in Algorithm 1, which

greatly exhibits the idea of the divide and conquer. The 2 subproblems

L and R are processed in parallel when the scale of the problem is over

the threshold.

A crucial part of the parallel computing of D-TIN in Cloud lies in

the construction of subtriangulations correspondent to the branch

nodes in the binary tree model, while the internal nodes uses the

divide-and-conquer service and the final leaf nodes of the binary tree

adopted the incremental service to construct D-TIN; the encapsulation

of the IA Cloud service can be seen in Algorithm 2.

3.5 Cost model

Assume that the size of D-TIN computing problem is n, and the thresh-

old for distributed and parallel D-TIN computing is 𝜃. Let k be the num-

ber of nodes needed to process subproblems of size m ⩽ 𝜃. Then, the

number of subdivisions is easy to calculate according to the mechanism

of the HA. On the basis of the algorithm described above, the division of

the problem consists of a binary tree. Therefore, k is of the form k = 2𝜔,

such that 2𝜔−1 < ⌈ n
𝜃
⌉ ⩽ 2𝜔.

For a site set of n points, the HA divides the problem recursively

into 2 approximately equal subproblems. Let T1(n) be the response

time for the sequential version and Tk(n) be the response time for the

distributed version with k processors. T1(n) would be the sum of the

computation time by the incremental insertion algorithm and the merg-

ing time of the 2 subproblems, while Tk(n) would be the sum of the

computation time by the incremental insertion algorithm, the merging
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time of the 2 subproblems and the communication time between the

server and the clients. Let TIA(m) be the computation time of IA for a

problem of size m, Tmerge(m) be the time for merging 2 subproblems of

size m
2

each and Tcomm(m) be the time for exchanging dataset of size m

among the servers and clients. So the response time for the sequential

version T1(n) and the distributed version Tk(n) would be

T1(n) = kTIA(m) +
𝜔∑

i=1

k
2i

Tmerge(2im), (1)

Tk(n) = TIA(m) +
𝜔∑

i=1

(
Tmerge(2im) + Tcomm(2i−1m)

)
, (2)

because D-TIN can be computed in O(nlogn) by using the

divide-and-conquer algorithm and in O(n2) by using the incremental

insertion algorithm. Therefore, time complexity for D-TIN construction

in the leaf node with m points would be O(m2)by the incremental inser-

tion algorithm, and the corresponding time for merging 2 subproblems

L and R in the internal nodes would be O(2m) by the HA.

As for the communication time in the distributed version of D-TIN

construction, a data structure QuadEdge is adopted to fully express the

spatial topology of the D-TIN and its dual, so the main source of data

transmission between the clients and the servers is a series of Quad-

Edge. For a site set of n points, there are 3n + 6 edges at most in the

corresponding D-TIN. As a result, the communication time depends on

the number of QuadEdge.

To sum up, the response time for the sequential version T1 is km

(m + 𝜔),
Similarly, the response time for the distributed and parallel version

Tk is m(m + 3(k − 1)), because the subproblems with the same level in

the binary tree structure are computed in parallel.

It can be found that the distributed version, Tk(n), outperforms the

sequential version, T1(n), by a factor k, especially when the problem

size becomes larger and enough Cloud nodes are available for the dis-

tributed version of D-TIN computing. Moreover, according to the prin-

ciple of the HA, it has 2 special cases: (1) it can degenerate into the

divide-and-conquer algorithm if the threshold 𝜃 is smaller than 1. In

this case, we need as many processing nodes as the size of the problem.

Therefore, the communication time may dominate the whole execution,

which is not effective way of distributing the algorithm. (2) The HA can

degenerate into the incremental insertion algorithm if the threshold

𝜃 ⩾ n. In this case, the number of processing nodes will be k = 1, and the

response time will be equal to the sequential version’s response time.

4 EXPERIMENTS AND ANALYSIS

Some experiments are performed to compare the performance of

the HA in a single machine (sequential implementation) with the dis-

tributed version (deployed in GeoKSCloud platform). In the experi-

ments, different problem sizes were tested with threshold taken as

𝜃 ∈ [ n
8
,

n
4
]. Following the process of distributed scheduling of the

hybrid D-TIN service, the problem is divided recursively into 2 sub-

problems, and k
2

different Cloud nodes with hybrid D-TIN service and

k Cloud nodes with the incremental insertion D-TIN service are found

and invoked to finish the parallel construction work. Figure 5 shows an

example of the scheduling process with a site set of 10 000 points and

the threshold is 2000. The rectangle object denotes the hybrid D-TIN

service, while the rounded rectangle object denotes the incremental

insertion D-TIN service. Both the hybrid and the incremental insertion

D-TIN services are deployed over the GeoKSCloud nodes.

The number of sites and the corresponding executions time are listed

in the Table 1. The experimental results indicate that the distributed

and parallel D-TIN construction service based on the proposed HA can

be used to compute Delaunay TIN in Cloud environment in an effi-

cient way. One can notice from the results that the distributed version

outperforms the sequential version, especially when m is becoming

larger and larger. This is not really a surprise since more processing

nodes are expected to perform better than one, as it is expected in the

theoretical model.

Moreover the performance issue is not in the computation time,

but in the communication time and the way that the algorithm was

parallelized on k processing nodes. Therefore, the speed-up of the dis-

tributed version of the algorithm can be affected heavily by the over-

heads due to the communication times and other system activities. One

can notice that for smaller sizes of the problem, the distributed version

performs poorly against the sequential version, as the communications

count for large part of the response time. From the last 3 columns of

Table 1, we can conclude that the communication time of the distributed

version counts for a significant proportion of the global response time.

FIGURE 5 Example of distributed Delaunay triangulation (D-TIN) construction with n = 10000, 𝜃 = 2000
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TABLE 1 Time consumption of Delaunay triangulation construction with
different conditions (time, sec)

Prob.Size Sequential Impl Para & Dist Impl (𝜃 = ⌈ n
8
⌉)

(n) 𝜃 = log2n 𝜃 = ⌈ n
8
⌉ Comm time Comp time Total time

40 000 1.422 0.879 0.837 0.454 1.292

80 000 2.797 2.291 1.603 0.939 2.541

120 000 4.349 4.137 1.985 1.457 3.442

160 000 6.265 6.428 2.590 2.291 4.880

200 000 7.677 9.203 3.662 2.410 6.073

240 000 9.563 12.164 4.053 3.213 7.266

400 000 16.411 27.793 6.724 5.182 11.906

600 000 26.349 51.533 12.480 8.994 21.474

800 000 35.693 94.398 17.888 12.274 30.162

1 000 000 44.505 131.182 22.462 16.163 38.625

FIGURE 6 Experimental and theoretical execution time of A, sequential and B, parallel Delaunay triangulation (D-TIN)

However, the distributed implementation is much better when the scale

of the problem increases gradually.

Figure 6 shows the experimental and theoretical time complexity of

sequential and parallel versions of D-TIN based on the experimental

results reported in Table 1 and the cost model developed in Section 3.5.

Figure 6A,B follows exactly what was expected in theory. Particularly,

the communication time between nodes in the distributed version is

well inline with the experimental results. The difference between the

theoretical and the experimental results is due to some other system

activities, such as the scheduling time of Cloud services. Moreover, we

considered in our theoretical model that the communication time is

proportional to the size of the problem (linear progression), which is

not really the case on Cloud platforms due to the network traffic and

heterogeneity of their resources. This is also reflected in these results.

Overall results of the distributed version of the HA are promising and

mainly for very large size of the problem.

5 CONCLUSIONS

In this paper, an adaptive parallel D-TIN construction algorithm with

dynamic pruned binary tree model is presented, which combines the

divide-and-conquer algorithm and the incremental insertion algorithm,

and has the advantages of both algorithms. Moreover, the proposed

HA is high efficiency and simple to be migrated and deployed in a dis-

tributed and parallel computing environment.

In addition, a parallel implementation of the hybrid D-TIN con-

struction algorithm is introduced as well. We implement both

the stand-alone version and the parallel version of the HA with

Java/J2EE in our GeoKSCloud test-bed. For the parallel version, the

divide-and-conquer part and the incremental insertion part are encap-

sulated as 2 atomic Cloud services, and they are deployed in several

Cloud-computing nodes, respectively. Then, the integrated use 2

kinds of Cloud-computing nodes to construct D-TIN in parallel in a

dynamic pruned binary tree model is narrated, namely, the distributed

and parallel version of D-TIN computing, which is the center work of

the paper.

Finally, the effectiveness and efficiency of the HA and the parallel

version are verified through both theoretical analysis and exper-

iments on stand-alone and Cloud environment. Theoretically, the

incremental insertion algorithm for D-TIN construction has a time com-

plexity of O(n2), while the divide-and-conquer algorithm is O(nlogn).
The HA is a combination of the incremental insertion algorithm and

the divide-and-conquer algorithm, whose time complexity is also

O(nlogn), which is optimal for D-TIN construction in stand-alone model.

Although, there is not any improvement in the efficiency of D-TIN

construction, but the HA has some advantages over the incremental

insertion and the divide-and-conquer algorithms. First, the HA own the
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superiority of both algorithms. That is, it takes the characteristics of

high-adaptability, simple to understand and implement by incremen-

tal insertion algorithm, and has the characteristics of high-efficiency,

autonomy by the divide-and-conquer algorithm simultaneously.

Second, the HA can be easily migrated and deployed as a parallel

version to realized the distributed and parallel computing of D-TIN.

Besides that, some experimentations are conducted, to compare the

time consumption of the HA with the IA and the divide-and-conquer

algorithm, and to compare the cost of the stand-alone HA with the par-

allel version, results show that the HA outperforms the incremental

insertion algorithm, but it is a bit weaker than the divide-and-conquer

algorithm. In a word, the HA and its parallel version for D-TIN construc-

tion are effective and competitive in 2 aspects. First, without taking into

consideration the time consumption of data transfer among different

distributed and parallel computing nodes, when divide a problem and

distribute the subproblems to the related computing nodes, and leave

out the cost of scheduling of the computing nodes, the algorithm has

a time complexity of O(nlogn), which is optimal for D-TIN construction.

Second, the datasets in many practical applications are usually very

large and may be stored in different geographical distributed nodes,

and the D-TIN can not be computed in a single machine and even in a

HPC server, the traditional stand-alone algorithm is incapable of fig-

uring out the problem. At this very moment, the proposed HA and its

parallel version can be used to compute D-TIN in a distributed and

parallel network environment with a satisfiable efficiency.

Furthermore, this paper implements and tests the hybrid D-TIN com-

puting algorithm in GeoKSCloud, which is developed by our research

team. Among which, GeoKSCloud is only a network environment that

sustains 2 atomic services (divide-and-conquer and incremental inser-

tion parts) of the HA, helps to manage, transfer, allocate, and schedule

of the data and computer powers, to enable the distributed and paral-

lel computing of D-TIN. The HA can be easily migrated and deployed in

another distributed and parallel computing environment, such as grid,

HPC, or exascale computing platform, with PCs or clusters.
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